

• Which is the most efficient?

- Disadvantages
 - Emphasis on fast delivery of accurate quantity.
 - Less emphasis on even spreading?
 - Heavy equipment often on questionable ground conditions (partic. ploughed ground etc)

Oak Park Research

Spreading mechanism

Types

- Twin Disc development dominates
- Single disc one sided
- Reciprocating Spout limited to 9 12m max
- Pneumatic
 - ▶ Too expensive particularly >> 12m
 - Maintenance and corrosion issues
 - Test hall CVs no better
 - Windy conditions advantage
 - Sharp shut-off research farms

Twin disc machines Up to 50+m bout widths (in test halls!) Current machines developed in era of independent testing in 1990s Capable of good test-hall CVs Detailed disc design Disc Size, Shape, Speed, Rotation Vane Size/Length, Shape, Angle, Number Delivery point of fertiliser

Cock Park Research Applying the correct rate

- Fertiliser flow rate
- Tractor forward speed
- Correct bout width
- Flow control mechanisms
 - Gravity based with agitators and variable shutter
 - Variable belt speed and adjustable shutter
 - Force feed type (seed drill type) with variable speed rollers or variable area rollers
- Calibration essential

Oak Park Research

Calibration

Without calibration!

- ▶ Farmer with 40ha in 5 fields
- Start with last years settings or poor 'book' value
- ▶ Spread the first field at 20% more than intended
- ▶ Adjust: 2nd field at 15% less than intended rate
- ▶ Adjust: 3rd field at 5% more than intended
- Adjust: Last 2 fields correct
- Overall farm rate is correct but 40% of area well outside target rates

Calibration practice

Manufacturers support

Rate charts

eagasc

Oak Park Research

- Web based material
- Tests of Irish fertiliser
- Test kits (sieve test and ID charts)
- Flow testers
- Calibration procedures
- On-board weighing and automatic calibration

Calibration practice-2

Calibration

eazasc

Oak Park Research

- Flow Rate measurement
 - Time flow and weigh
 - Discs removed, or stopped + calibration kit
 - Varies with machine easy best
- Driving speed check (wheelslip 20% ploughed)
- Bout width check (GPS, measure)

Active rate control

- Constant rate with:
 - Variable forward speed
 - Variable flow rate
- Can change application rate on the go
 - Manually

eazasc

Oak Park Research

- Variable rate Precision Ag type system
- Controlled headland operation
 - Graduated shut off etc

Spreading evenly

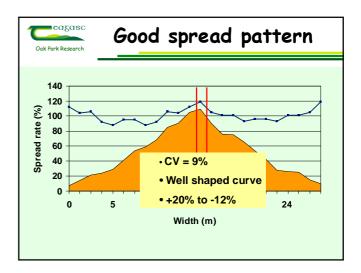
Machine design

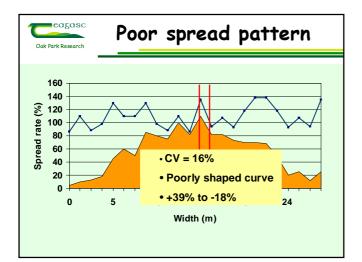
eazasc

Oak Park Research

- Spreading elements:
 - discs, vanes and fertiliser delivery point
- Machine setting
- Disc speed and type,
 - Vane type, length, number, angle
 - Fertiliser drop position
 - Hopper angle
- Height over ground / crop
- Absence of wear on spreading components
- Fertiliser characteristics
- Weather conditions

Fertiliser characteristics Granule size, shape, density and strength. Subject of research Influences: Movement on disc Throw off from vanes Movement through air Ideal:


- ▶ 80% of particles in 2-4mm range
- Rounded and smooth
- Blend components should be similar: mean particle size within 10% of mean
- Move to 'Bulk' deterioration in spread characteristics
- Interaction between fertiliser and spreader


Cagasc Oak Park Research

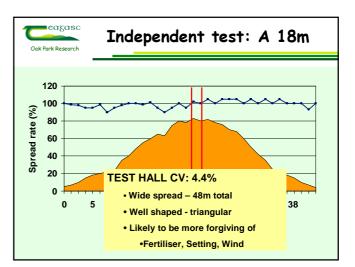
Evenness testing

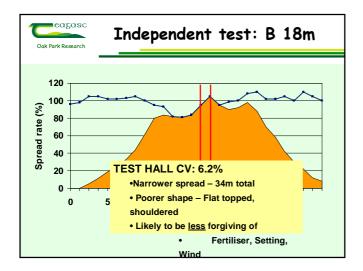
- Test hall indoor controlled environment 0.25m2 trays detailed basic pattern
 - Standard tests (Bygholm, CEMAGREF)
 - Manufacturers test halls
 - CV values and shape of spread pattern
 - ▶ CV: less than 15% = acceptable but some <5%
- Field full testing very little
- Poor repeatability
- Field checking 4-7 trays
 - Overlapped pattern
 - Poor repeatability

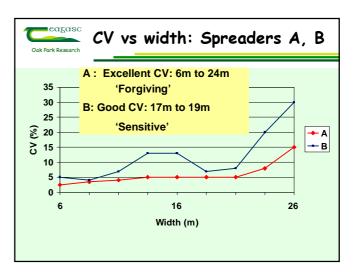
Oak Park Research

Field performance

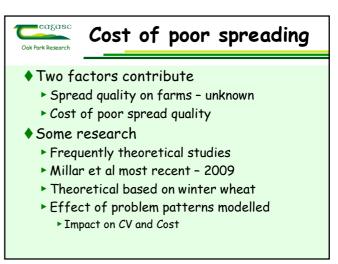
- Variations in fertiliser physical quality
- Variations in disc speed
- Angle of disc to crop:
 - Linkage mo TEST HALL CV of 5%

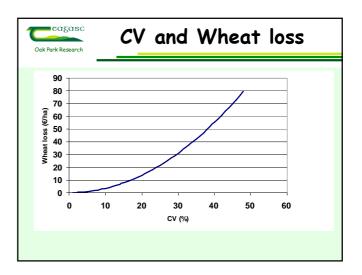

• Field CV ???

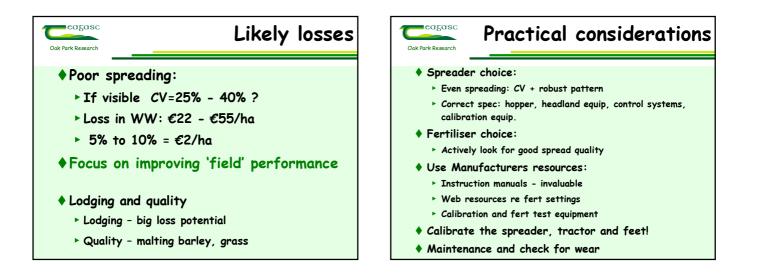

- variation; s
- Bumpy cond
 10%
- Inadequate 20%
- Incorrect c 30% (striping)
- Wear in spreading components
- Weather conditions: wind


Dak Park Research 1999 - 2000 tests Test Hall tests Independent at Bygholm All major twin discs tested

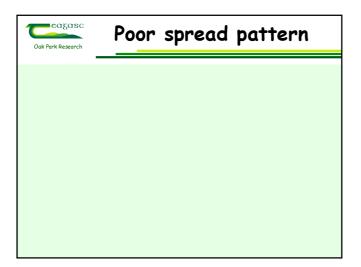
- Very comprehensive
- Many Widths and Fert types
- ♦ Influenced Fert spreader development
- ♦ Little since!!!







5 pattern defects						
Problem	CV range	Cost range (€/ha)				
Skewed side distrib.(Pn)	6 - 21	1 - 14				
Incorrect width (disp)	5 - 27	1 - 23				
Asymmetric pattern	5 - 50	1 - 74				
Quadratic spline (disp)	7 - 57	2 - 135				
Twin spline (disp)	7 - 55	2 - 75				
Twin spline asymmetric	8 - 41	2 - 47				



Finally

- Fertiliser spreading hugely important technical task
 - Must get it right
 - Still true of contract spreading

Researchers / Manufacturers

Focus on field performance

Oak Park Research			